If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+120t+30=0
a = -16; b = 120; c = +30;
Δ = b2-4ac
Δ = 1202-4·(-16)·30
Δ = 16320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16320}=\sqrt{64*255}=\sqrt{64}*\sqrt{255}=8\sqrt{255}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-8\sqrt{255}}{2*-16}=\frac{-120-8\sqrt{255}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+8\sqrt{255}}{2*-16}=\frac{-120+8\sqrt{255}}{-32} $
| 35-v=265 | | x2+9x+16=−x | | v=22+15 | | 9m-4(2m-5)=14 | | 9x-17=6x+14 | | 6k+6+5k=51+3k | | 30y=15*16 | | (6x+10)+(4x+30)=180 | | x2+19x+18=8x | | 3x+13=(5x+9) | | 34*15=30x | | |3x-6|=|x-6| | | 11/12/1=x/66 | | 7z+9=79 | | 12x+40-7x=-16-3x | | 4a-3(a=2(3a-2) | | 0=-4.9t^2+30t+2 | | 180=7x-3x-6x+15 | | 4=3-2k | | 4−23x=13x+5 | | (4x+28)/6=6 | | 2x-3+31=90 | | (3x+18)/8=6 | | x/4=158 | | 10.50+x=35.19 | | 4x+8=15−3x | | 3/4h=33/8+1/4 | | x2+7x+6=0 | | 8(-3+a)=-8 | | 2(x-5)+3x=0 | | (2x+5)/5=5 | | 5(4)^3t=120 |